242 research outputs found

    Predicting live birth, preterm and low birth weight infant after in-vitro fertilisation: a prospective study of 144018 treatment cycles

    Get PDF
    Background The extent to which baseline couple characteristics affect the probability of live birth and adverse perinatal outcomes after assisted conception is unknown. Methods and Findings We utilised the Human Fertilisation and Embryology Authority database to examine the predictors of live birth in all in vitro fertilisation (IVF) cycles undertaken in the UK between 2003 and 2007 (n = 144,018). We examined the potential clinical utility of a validated model that pre-dated the introduction of intracytoplasmic sperm injection (ICSI) as compared to a novel model. For those treatment cycles that resulted in a live singleton birth (n = 24,226), we determined the associates of potential risk factors with preterm birth, low birth weight, and macrosomia. The overall rate of at least one live birth was 23.4 per 100 cycles (95% confidence interval [CI] 23.2–23.7). In multivariable models the odds of at least one live birth decreased with increasing maternal age, increasing duration of infertility, a greater number of previously unsuccessful IVF treatments, use of own oocytes, necessity for a second or third treatment cycle, or if it was not unexplained infertility. The association of own versus donor oocyte with reduced odds of live birth strengthened with increasing age of the mother. A previous IVF live birth increased the odds of future success (OR 1.58, 95% CI 1.46–1.71) more than that of a previous spontaneous live birth (OR 1.19, 95% CI 0.99–1.24); p-value for difference in estimate <0.001. Use of ICSI increased the odds of live birth, and male causes of infertility were associated with reduced odds of live birth only in couples who had not received ICSI. Prediction of live birth was feasible with moderate discrimination and excellent calibration; calibration was markedly improved in the novel compared to the established model. Preterm birth and low birth weight were increased if oocyte donation was required and ICSI was not used. Risk of macrosomia increased with advancing maternal age and a history of previous live births. Infertility due to cervical problems was associated with increased odds of all three outcomes—preterm birth, low birth weight, and macrosomia. Conclusions Pending external validation, our results show that couple- and treatment-specific factors can be used to provide infertile couples with an accurate assessment of whether they have low or high risk of a successful outcome following IVF

    Nonlinear mixed effects modeling of gametocyte carriage in patients with uncomplicated malaria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gametocytes are the sexual form of the malaria parasite and the main agents of transmission. While there are several factors that influence host infectivity, the density of gametocytes appears to be the best single measure that is related to the human host's infectivity to mosquitoes. Despite the obviously important role that gametocytes play in the transmission of malaria and spread of anti-malarial resistance, it is common to estimate gametocyte carriage indirectly based on asexual parasite measurements. The objective of this research was to directly model observed gametocyte densities over time, during the primary infection.</p> <p>Methods</p> <p>Of 447 patients enrolled in sulphadoxine-pyrimethamine therapeutic efficacy studies in South Africa and Mozambique, a subset of 103 patients who had no gametocytes pre-treatment and who had at least three non-zero gametocyte densities over the 42-day follow up period were included in this analysis.</p> <p>Results</p> <p>A variety of different functions were examined. A modified version of the critical exponential function was selected for the final model given its robustness across different datasets and its flexibility in assuming a variety of different shapes. Age, site, initial asexual parasite density (logged to the base 10), and an empirical patient category were the co-variates that were found to improve the model.</p> <p>Conclusions</p> <p>A population nonlinear modeling approach seems promising and produced a flexible function whose estimates were stable across various different datasets. Surprisingly, dihydrofolate reductase and dihydropteroate synthetase mutation prevalence did not enter the model. This is probably related to a lack of power (quintuple mutations n = 12), and informative censoring; treatment failures were withdrawn from the study and given rescue treatment, usually prior to completion of follow up.</p

    Neutrophil elastase reduces secretion of secretory leukoproteinase inhibitor (SLPI) by lung epithelial cells: role of charge of the proteinase-inhibitor complex

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Secretory leukoproteinase inhibitor (SLPI) is an important inhibitor of neutrophil elastase (NE), a proteinase implicated in the pathogenesis of lung diseases such as COPD. SLPI also has antimicrobial and anti-inflammatory properties, but the concentration of SLPI in lung secretions in COPD varies inversely with infection and the concentration of NE. A fall in SLPI concentration is also seen in culture supernatants of respiratory cells exposed to NE, for unknown reasons. We investigated the hypothesis that SLPI complexed with NE associates with cell membranes <it>in vitro</it>.</p> <p>Methods</p> <p>Respiratory epithelial cells were cultured in the presence of SLPI, varying doses of proteinases over time, and in different experimental conditions. The likely predicted charge of the complex between SLPI and proteinases was assessed by theoretical molecular modelling.</p> <p>Results</p> <p>We observed a rapid, linear decrease in SLPI concentration in culture supernatants with increasing concentration of NE and cathepsin G, but not with other serine proteinases. The effect of NE was inhibited fully by a synthetic NE inhibitor only when added at the same time as NE. Direct contact between NE and SLPI was required for a fall in SLPI concentration. Passive binding to cell culture plate materials was able to remove a substantial amount of SLPI both with and without NE. Theoretical molecular modelling of the structure of SLPI in complex with various proteinases showed a greater positive charge for the complex with NE and cathepsin G than for other proteinases, such as trypsin and mast cell tryptase, that also bind SLPI but without reducing its concentration.</p> <p>Conclusion</p> <p>These data suggest that NE-mediated decrease in SLPI is a passive, charge-dependent phenomenon <it>in vitro</it>, which may correlate with changes observed <it>in vivo</it>.</p

    Small Cationic DDA:TDB Liposomes as Protein Vaccine Adjuvants Obviate the Need for TLR Agonists in Inducing Cellular and Humoral Responses

    Get PDF
    Most subunit vaccines require adjuvants in order to induce protective immune responses to the targeted pathogen. However, many of the potent immunogenic adjuvants display unacceptable local or systemic reactogenicity. Liposomes are spherical vesicles consisting of single (unilamellar) or multiple (multilamellar) phospholipid bi-layers. The lipid membranes are interleaved with an aqueous buffer, which can be utilised to deliver hydrophilic vaccine components, such as protein antigens or ligands for immune receptors. Liposomes, in particular cationic DDA:TDB vesicles, have been shown in animal models to induce strong humoral responses to the associated antigen without increased reactogenicity, and are currently being tested in Phase I human clinical trials. We explored several modifications of DDA:TDB liposomes - including size, antigen association and addition of TLR agonists – to assess their immunogenic capacity as vaccine adjuvants, using Ovalbumin (OVA) protein as a model protein vaccine. Following triple homologous immunisation, small unilamellar vesicles (SUVs) with no TLR agonists showed a significantly higher capacity for inducing spleen CD8 IFNγ responses against OVA in comparison with the larger multilamellar vesicles (MLVs). Antigen-specific antibody reponses were also higher with SUVs. Addition of the TLR3 and TLR9 agonists significantly increased the adjuvanting capacity of MLVs and OVA-encapsulating dehydration-rehydration vesicles (DRVs), but not of SUVs. Our findings lend further support to the use of liposomes as protein vaccine adjuvants. Importantly, the ability of DDA:TDB SUVs to induce potent CD8 T cell responses without the need for adding immunostimulators would avoid the potential safety risks associated with the clinical use of TLR agonists in vaccines adjuvanted with liposomes

    Serological Markers Suggest Heterogeneity of Effectiveness of Malaria Control Interventions on Bioko Island, Equatorial Guinea

    Get PDF
    BACKGROUND: In order to control and eliminate malaria, areas of on-going transmission need to be identified and targeted for malaria control interventions. Immediately following intense interventions, malaria transmission can become more heterogeneous if interventions are more successful in some areas than others. Bioko Island, Equatorial Guinea, has been subject to comprehensive malaria control interventions since 2004. This has resulted in substantial reductions in the parasite burden, although this drop has not been uniform across the island. METHODS/PRINCIPAL FINDINGS: In 2008, filter paper blood samples were collected from 7387 people in a cross-sectional study incorporating 18 sentinel sites across Bioko, Equatorial Guinea. Antibodies were measured to P. falciparum Apical Membrane Antigen-1 (AMA-1) by Enzyme Linked Immunosorbent Assay (ELISA). Age-specific seropositivity rates were used to estimate seroconversion rates (SCR). Analysis indicated there had been at least a 60% decline in SCR in four out of five regions on the island. Changes in SCR showed a high degree of congruence with changes in parasite rate (PR) and with regional reductions in all cause child mortality. The mean age adjusted concentration of anti-AMA-1 antibodies was mapped to identify areas where individual antibody responses were higher than expected. This approach confirmed the North West of the island as a major focus of continuing infection and an area where control interventions need to be concentrated or re-evaluated. CONCLUSION/INTERPRETATION: Both SCR and PR revealed heterogeneity in malaria transmission and demonstrated the variable effectiveness of malaria control measures. This work confirms the utility of serological analysis as an adjunct measure for monitoring transmission. Age-specific seroprevalence based evidence of changes in transmission over time will be of particular value when no baseline data are available. Importantly, SCR data provide additional evidence to link malaria control activities to contemporaneous reductions in all-cause child mortality

    Endemicity response timelines for Plasmodium falciparum elimination

    Get PDF
    Background: The scaling up of malaria control and renewed calls for malaria eradication have raised interest in defining timelines for changes in malaria endemicity. Methods: The epidemiological theory for the decline in the Plasmodium falciparum parasite rate (PfPR, the prevalence of infection) following intervention was critically reviewed and where necessary extended to consider superinfection, heterogenous biting, and aging infections. Timelines for malaria control and elimination under different levels of intervention were then established using a wide range of candidate mathematical models. Analysis focused on the timelines from baseline to 1% and from 1% through the final stages of elimination. Results: The Ross-Macdonald model, which ignores superinfection, was used for planning during the Global Malaria Eradication Programme (GMEP). In models that consider superinfection, PfPR takes two to three years longer to reach 1% starting from a hyperendemic baseline, consistent with one of the few large-scale malaria control trials conducted in an African population with hyperendemic malaria. The time to elimination depends fundamentally upon the extent to which malaria transmission is interrupted and the size of the human population modelled. When the PfPR drops below 1%, almost all models predict similar and proportional declines in PfPR in consecutive years from 1% through to elimination and that the waiting time to reduce PfPR from 10% to 1% and from 1% to 0.1% are approximately equal, but the decay rate can increase over time if infections senesce. Conclusion: The theory described herein provides simple "rules of thumb" and likely time horizons for the impact of interventions for control and elimination. Starting from a hyperendemic baseline, the GMEP planning timelines, which were based on the Ross-Macdonald model with completely interrupted transmission, were inappropriate for setting endemicity timelines and they represent the most optimistic scenario for places with lower endemicity. Basic timelines from PfPR of 1% through elimination depend on population size and low-level transmission. These models provide a theoretical basis that can be further tailored to specific control and elimination scenarios

    The use of schools for malaria surveillance and programme evaluation in Africa

    Get PDF
    Effective malaria control requires information on both the geographical distribution of malaria risk and the effectiveness of malaria interventions. The current standard for estimating malaria infection and impact indicators are household cluster surveys, but their complexity and expense preclude frequent and decentralized monitoring. This paper reviews the historical experience and current rationale for the use of schools and school children as a complementary, inexpensive framework for planning, monitoring and evaluating malaria control in Africa. Consideration is given to (i) the selection of schools; (ii) diagnosis of infection in schools; (iii) the representativeness of schools as a proxy of the communities they serve; and (iv) the increasing need to evaluate interventions delivered through schools. Finally, areas requiring further investigation are highlighted

    Antihypertensive and antioxidant effects of dietary black sesame meal in pre-hypertensive humans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It has been known that hypertension is an independent risk factor for cardiovascular disease (CVD). CVD is the major cause of morbidity and mortality in developed and developing countries. Elevation of blood pressure (BP) increases the adverse effect for cardiovascular outcomes. Prevention of increased BP plays a crucial role in a reduction of those outcomes, leading to a decrease in mortality. Therefore, the purpose of this study was to investigate the effects of dietary black sesame meal on BP and oxidative stress in individuals with prehypertension.</p> <p>Methods</p> <p>Twenty-two women and eight men (aged 49.8 ± 6.6 years) with prehypertension were randomly divided into two groups, 15 subjects per group. They ingested 2.52 g black sesame meal capsules or placebo capsules each day for 4 weeks. Blood samples were obtained after overnight fasting for measurement of plasma lipid, malondialdehyde (MDA) and vitamin E levels. Anthropometry, body composition and BP were measured before and after 4-week administration of black sesame meal or a placebo.</p> <p>Results</p> <p>The results showed that 4-week administration of black sesame meal significantly decreased systolic BP (129.3 ± 6.8 vs. 121.0 ± 9.0 mmHg, <it>P </it>< 0.05) and MDA level (1.8 ± 0.6 vs. 1.2 ± 0.6 μmol/L, <it>P </it>< 0.05), and increased vitamin E level (29.4 ± 6.0 vs. 38.2 ± 7.8 μmol/L, <it>P </it>< 0.01). In the black sesame meal group, the change in SBP tended to be positively related to the change in MDA (<it>R = 0.50, P </it>= 0.05), while the change in DBP was negatively related to the change in vitamin E (<it>R = -0.55, P </it>< 0.05). There were no correlations between changes in BP and oxidative stress in the control group.</p> <p>Conclusions</p> <p>These results suggest the possible antihypertensive effects of black sesame meal on improving antioxidant status and decreasing oxidant stress. These data may imply a beneficial effect of black sesame meal on prevention of CVD.</p

    Dendritic cell-specific delivery of Flt3L by coronavirus vectors secures induction of therapeutic antitumor immunity

    Get PDF
    Efficacy of antitumor vaccination depends to a large extent on antigen targeting to dendritic cells (DCs). Here, we assessed antitumor immunity induced by attenuated coronavirus vectors which exclusively target DCs in vivo and express either lymphocyte- or DC-activating cytokines in combination with a GFP-tagged model antigen. Tracking of in vivo transduced DCs revealed that vectors encoding for Fms-like tyrosine kinase 3 ligand (Flt3L) exhibited a higher capacity to induce DC maturation compared to vectors delivering IL-2 or IL-15. Moreover, Flt3L vectors more efficiently induced tumor-specific CD8(+) T cells, expanded the epitope repertoire, and provided both prophylactic and therapeutic tumor immunity. In contrast, IL-2- or IL-15-encoding vectors showed a substantially lower efficacy in CD8(+) T cell priming and failed to protect the host once tumors had been established. Thus, specific in vivo targeting of DCs with coronavirus vectors in conjunction with appropriate conditioning of the microenvironment through Flt3L represents an efficient strategy for the generation of therapeutic antitumor immunity
    corecore